DID YOU KNOW ??...
Lead Contaminants

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 15 to 30 seconds or until it becomes cold or reaches a steady temperature before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, you may wish to have your water tested.

Leaking toilets is the number one reason our customers experience higher-than-usual water bills. A tiny leak can waste hundreds, or even thousands, of gallons of water in a month. To test your toilets, place a few drops of blue food coloring in the toilet’s tank. After a few minutes, check the bowl. If it is blue, your toilet is leaking.

SAVE MONEY

Water.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animal activity, including human. Contaminants that may be present in source water include: (1) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; (2) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (3) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (4) Organic chemical contaminants, including synthetic and volatile organic chemicals and pharmaceuticals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, sewage treatment plants and septic systems; (5) Radiologic contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).

In order for you to get the most from this report we are providing the following list of terms and definitions:

- ppb - parts per billion
- mg/L – milligrams per liter
- ND - not detected

Nephelometric Turbidity Unit (NTU) – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Water from surface sources is treated to make it drinkable while groundwater may or may not have any treatment. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

General Information

The Board of Supervisors normally meet every month on the second Wednesday at 3:00 pm and the fourth Wednesday at 6:00 pm. in the Board of Supervisors’ Meeting Room located in the Rockingham County Administration Center, 20 E Gay St, Harrisonburg, VA.

If you have questions or comments about this report or want more information, please feel free to contact:

Philip Rhodes
Director of Public Works
540-564-3020

or

VDH Office of Drinking Water
Lexington Regional Office
540-463-7136

Our Water Source
The source of your drinking water is obtained from the City of Harrisonburg whose sources consist of a groundwater source at Silver Lake in Dayton and surface water sources at North River in Bridgewater and Dry River in Rawley Springs.

Treatments
Raw water is disinfected using chlorine, fluoridation and filtration.

Microbial Contaminants
Our water system performs monthly bacteriological monitoring to test for the presence of coliform bacteria, fecal coliform and E.coli. We are required to do 2 bacteriological samples per month. Our sampling detected no fecal coliform positive results in the past twelve months.

Lead and Copper Monitoring

<table>
<thead>
<tr>
<th>Date Last Sampled for Lead:</th>
<th>September 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>90th Percentile for Lead:</td>
<td>2.9 ppb</td>
</tr>
<tr>
<td>Violation:</td>
<td>No</td>
</tr>
<tr>
<td>Likely Source:</td>
<td>Household Plumbing</td>
</tr>
<tr>
<td>Number of Sites Exceeding Lead Action Level:</td>
<td>0 out of 10</td>
</tr>
</tbody>
</table>

The action level for lead is 15ppb.

<table>
<thead>
<tr>
<th>Date Last Sampled for Copper:</th>
<th>September 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>90th Percentile for Copper:</td>
<td>0.078 mg/L</td>
</tr>
<tr>
<td>Violation:</td>
<td>No</td>
</tr>
<tr>
<td>Likely Source:</td>
<td>Household Plumbing</td>
</tr>
<tr>
<td>Number of Sites Exceeding Lead Action Level:</td>
<td>0 out of 10</td>
</tr>
</tbody>
</table>

The action level for copper is 1.3 mg/L.

Metals
Required Sampling Frequency: Once every year
Date Last Sampled: June 2019
Barium 0.033 ppm
Likely source- Discharge of drilling wastes; discharge from metal refineries; Erosion from natural deposits.

Haloacetic Acids (HAA5)
Last Date Sampled: Quarterly 2019
0.012-0.019 mg/L (range) Average 0.0155 No Violation
Likely source- By-product of drinking water chlorination

Total Trihalomethanes (THM)
Last Date Sampled: Quarterly 2019
0.0026 mg/L 0.046 mg/L (range) Average 0.0355 mg/L
No violation
Likely source- By-product of drinking water chlorination

Chemical Monitoring
Note to our water users: The state requires us to monitor for certain contaminants less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of our data may be more than one year old.

Total Organic Carbon (TOC)
Sampled Monthly 2019 Range ND- 0.083 mg/L
Average 0.43 mg/L No Violation
Likely source- Naturally present in the environment.

Other Results

<table>
<thead>
<tr>
<th>Turbidity</th>
<th>NTU Maximum</th>
<th>No violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Runoff</td>
<td>0.12 mg/L</td>
<td>All samples were < 0.3 NTU 100% of the time Daily 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chlorine</th>
<th>mg/L</th>
<th>No violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range ND</td>
<td>0.24 mg/L - 1.42 mg/L</td>
<td>Daily 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrates</th>
<th>mg/L</th>
<th>No violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Runoff</td>
<td>1.62 mg/L</td>
<td>Sample June 2019</td>
</tr>
</tbody>
</table>

Source Water Assessment. A source water assessment for the City of Harrisonburg was completed by the VDH on May 24, 2002. This assessment determined that the City’s water supply may be susceptible to contamination because it is surface waters exposed to a wide array of contaminants at varying concentrations and changing hydrologic, hydraulic and atmospheric conditions that promote migration of contaminants from land use activities of concern within the assessment area. More specific information may be obtained by contacting the water system representative listed above.

This report prepared by

Rockingham County Public Works