DID YOU KNOW ??...

Lead Contaminants

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 15 to 30 seconds or until it becomes cold or reaches a steady temperature before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Leaking toilets is the number one reason our customers experience higher-than-usual water bills. A tiny leak can waste hundreds, or even thousands, of gallons of water in a month. To test your toilets, place a few drops of blue food coloring in the toilet’s tank. After a few minutes, check the bowl. If it is blue, your toilet is leaking.

SAVE WATER: SAVE MONEY $$$$$$$$$$$$$$$$$$$$$$$

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animal activity, including human. Contaminants that may be present in source water include: (1) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; (2) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (3) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (4) Organic chemical contaminants, including synthetic and volatile organic chemicals and pharmaceuticals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, sewage treatment plants and septic systems; (5) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).

In compliance with the Safe Drinking Water Act and as a service to our water users, Rockingham County presents this report, which summarizes our efforts to provide our water users with safe drinking water. This report covers the period from January 1, 2019 to December 31, 2019.

The quality of your drinking water meets all state and federal requirements administered by the Virginia Department of Health (VDH), Office of Drinking Water.

In order for you to get the most from this report we are providing the following list of terms and definitions:

- ppb-parts per billion
- mg/L– milligrams per Liter
- ND-not detected

Nephelometric Turbidity Unit (NTU) – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Our Water Source
The source of your drinking water is groundwater obtained from two drilled wells located in the McGahey'sville area.

Treatment
Raw water is disinfected using chlorine. Three Springs well water is filtered through a membrane microfiltration system, and fluoride is added.

Source Water Assessment
A Source Water Assessment was performed by the State to determine our water system's susceptibility to contaminants in July 2002. It was determined that our wells have a high susceptibility due to being under the direct influence of surface water. However, there has been no known contamination since 2002.

Microbial Contaminants
Our water system performs monthly bacteriological monitoring to test for the presence of coliform bacteria, fecal coliform and E. coli. We are required to do 7 bacteriological samples per month. Our sampling detected no coliform or fecal coliform positive results in the past twelve months.

Lead and Copper Monitoring
Date Last Sampled for Lead: August 2017
90th Percentile for Lead: <2.0 ppb
Violation: No
Likely Source: Household Plumbing
Number of Sites Exceeding Lead Action Level: 1 out of 20

The action level for lead is 15 ppb.

Date Last Sampled for Copper: August 2017
90th Percentile for Copper: 0.14 mg/L
Violation: No
Likely Source: Household Plumbing
Number of Sites Exceeding Copper Action Level: 0 out of 20

The action level for copper is 1.3 mg/L.

Chemical Monitoring
Note to our water users: The state requires us to monitor for certain contaminants less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of our data may be more than one year old.

Chlorine
0.37-2.06 mg/L Daily 2019 No Violation

Metals
Required Sampling Frequency: Once every year
Date Last Sampled: November 2019
Barium 0.035
Likely source - Discharge of drilling wastes; discharge from metal refineries; Erosion from natural deposits.

Radionuclides
Last Date Sampled: November 2015
Result: Gross Beta: 2.5 ± 0.6 pCi/L No Violation
Combined Radium
Last Date Sampled: November 2015
Result: 0.8 ± 0.14 pCi/L No Violation
Gross Alpha 3.6 ± 1.5 pCi/L No Violation

Haloacetic Acids (HAA5)
Last Date Sampled: Quarterly 2019
0.0017-0.021 mg/L Range Average 0.0019 No Violation
Likely source - By-product of drinking water chlorination

Total Trihalomethanes (THM)
Last Date Sampled: Quarterly 2019
0.0038-0.007 mg/L Range 0.0054 Average No Violation
Likely source - By-product of drinking water chlorination

Other Results
Fluoride (range) 0.24-0.96 Range
Likely source - Water additive, Erosion of natural deposits Monthly 2019

Nitrates
3.68 mg/L
Likely source - Fertilizer runoff, Leaching from septic tanks, seawater, erosion of natural deposits
November 2019

Hardness (total) 189 mg/L

Turbidity (range) Max - 0.041 NTU
Likely source - Soil Runoff
TT= 1.0 NTU All samples were < .300 NTU 100 % of the time Daily 2019